
Sienna.Network
Lending Protocol
(Updated code)
CosmWasm Smart Contract

Security Audit

Prepared by: Halborn

Date of Engagement: April 26th, 2022 - April 29th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 2

CONTACTS 2

1 EXECUTIVE OVERVIEW 3

1.1 INTRODUCTION 4

1.2 AUDIT SUMMARY 4

1.3 TEST APPROACH & METHODOLOGY 4

RISK METHODOLOGY 5

1.4 SCOPE 7

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 8

3 FINDINGS & TECH DETAILS 9

3.1 (HAL-01) UNCHECKED MATH - INFORMATIONAL 11

Description 11

Code Location 11

Risk Level 12

Recommendation 12

Remediation Plan 12

1



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 04/26/2022 Alexis Fabre

0.2 Document Updates 04/29/2022 Alexis Fabre

0.3 Draft version 04/29/2022 Alexis Fabre

0.4 Draft Review 04/29/2022 Gabi Urrutia

1.0 Remediation Plan 04/29/2022 Alexis Fabre

1.1 Remediation Plan Review 04/29/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Alexis Fabre Halborn Alexis.Fabre@halborn.com

2

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Alexis.Fabre@halborn.com


3

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Sienna.Network engaged Halborn to conduct a security audit on their smart

contracts beginning on April 25th, 2022 and ending on April 29th, 2022.

The security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided a full-time security engineer to audit the

security of the smart contracts. The security engineer is a blockchain and

smart-contract security expert with advanced penetration testing, smart-

contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

• Review codebase changes since last audit

In summary, Halborn identified an improvement to reduce the likelihood

and impact of the risks, which was accepted by Sienna team:

• Ensure that all numeric operation uses checked methods.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

4

EX
EC

UT
IV

E
OV

ER
VI

EW



smart contracts and can quickly identify items that do not follow security

best practices. The following phases and associated tools were used

throughout the term of the audit:

• Research into architecture, purpose, and use of the platform.

• Manual code read and walkthrough.

• Manual assessment of use and safety for the critical Rust variables

and functions in scope to identify any contracts logic related

vulnerability.

• Fuzz testing (Halborn custom fuzzing tool)

• Checking the test coverage (cargo tarpaulin)

• Scanning of Rust files for vulnerabilities (cargo audit)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

5

EX
EC

UT
IV

E
OV

ER
VI

EW



3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

6

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

1. CosmWasm Smart Contracts

(a) Repository: https://git.sienna.network/SiennaNetwork/contracts

(b) Commit IDs in scope:

i. Oracle decimal scaling: 014a376eee9162218f0c52e8d26a24303b1f7dc3

ii. Market Send/Receive: 915aaf9e6535a8d012371063dad09b96e2287d46

iii. Refund overpaid amount: 6dc6ad1fde26d8b5dc6fff81514fb0164cf67c07

iv. Simulate liquidation: 2fa2d8066753828953bc554266ac84d8e872fbb6

(c) Contracts in scope:

i. oracle

ii. market

iii. overseer

It is worth noting that the results of this audit are a complement to the

information provided in a previous report for the security audit performed

to the codebase with commit id dbe3c8688e75dd0b89634e6f22f861e44c849f06.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://git.sienna.network/SiennaNetwork/contracts
https://git.sienna.network/SiennaNetwork/contracts/commit/014a376eee9162218f0c52e8d26a24303b1f7dc3
https://git.sienna.network/SiennaNetwork/contracts/commit/915aaf9e6535a8d012371063dad09b96e2287d46
https://git.sienna.network/SiennaNetwork/contracts/commit/6dc6ad1fde26d8b5dc6fff81514fb0164cf67c07
https://git.sienna.network/SiennaNetwork/contracts/commit/2fa2d8066753828953bc554266ac84d8e872fbb6
https://git.sienna.network/SiennaNetwork/contracts/src/commit/dbe3c8688e75dd0b89634e6f22f861e44c849f06


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 1

IM
PA
CT

LIKELIHOOD

(HAL-01)

8

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) UNCHECKED MATH Informational ACKNOWLEDGED

9

EX
EC

UT
IV

E
OV

ER
VI

EW



10

FINDINGS & TECH
DETAILS



3.1 (HAL-01) UNCHECKED MATH -
INFORMATIONAL

Description:

In computer programming, an overflow occurs when an arithmetic operation

attempts to create a numeric value that is outside the range that can be

represented with a given number of bits -- either larger than the maximum

or lower than the minimum representable value.

In that particular case, a user sends funds to repay his debt, and a

remainder is calculated to refund the extra amount. That remainder is

then casted down from 256 bits to 128 bits unsigned integer without

checking that its value is lower than the maximal value carried by a 128

bits unsigned integer.

This issue has been raised as informational only, as it was not possible

to define a clear exploitation scenario for the affected cases, mainly

because all SNIP20 amounts and transfers are 128 bits unsigned integers

and cannot exceed that limit. However, it seemed like a potentially risky

pattern and therefore has been highlighted as such.

Code Location:

Listing 1: contracts/lend/market/src/contract.rs, (Line 797)

785 let remainder = snapshot.subtract_balance(interest.borrow_index (&

ë deps.storage)?, amount)?;

786 borrower.save_borrow_snapshot (&mut deps.storage , snapshot)?;

787

788 let amount = (amount .0 - remainder .0).into();

789 TotalBorrows :: decrease (&mut deps.storage , amount)?;

790

791 if remainder > Uint256 ::zero() {

792 let underlying = Contracts :: load_underlying(deps)?;

793

794 Ok(HandleResponse {

795 messages: vec![snip20 :: transfer_msg(

11

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



796 sender ,

797 remainder.low_u128 ().into(),

798 None ,

799 None ,

800 BLOCK_SIZE ,

801 underlying.code_hash ,

802 underlying.address

803 )?],

804 log: vec![],

805 data: None

806 })

807 } else {

808 Ok(HandleResponse :: default ())

809 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use the clamp_u128 method since the casting operation

would fail on overflow, which the low_u128 method does not.

Remediation Plan:

ACKNOWLEDGED: The Sienna.Network acknowledged this finding. They also

mentioned that low_u128 cannot overflow and thus cannot panic. They

use this method in places where they know that in practice the number

can never exceed 128::MAX because SNIP-20 tokens themselves use 128-bit

numbers and are constrained by this because of the underlying token being

used.

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan



