
Sienna.Network
Lending Protocol

CosmWasm Smart Contract
Security Audit

Prepared by: Halborn

Date of Engagement: February 15th, 2022 - March 4th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) USERS CAN ENTER MULTIPLE TIMES THE SAME MARKET - CRIT-

ICAL 14

Description 14

Code Location 15

Risk Level 16

Recommendation 17

Remediation Plan 17

3.2 (HAL-02) TRUNCATED DECIMALS CAN LEAD TO UNLIMITED LOANS - MEDIUM

18

Description 18

Code Location 18

Risk Level 19

Recommendation 19

Remediation plan 19

3.3 (HAL-03) NEW BORROWING PARAMETERS CAN BE APPLIED TO ONGOING

LOANS - LOW 20

1

Description 20

Code Location 20

Risk Level 22

Recommendation 22

Remediation plan 22

3.4 (HAL-04) ADMIN CAN SET WORTHLESS TOKENS AS COLLATERAL - INFOR-

MATIONAL 23

Description 23

Code Location 23

Risk Level 24

Recommendation 24

Remediation plan 24

3.5 (HAL-05) ORACLE RISK ALLOWING FREE LOANS - INFORMATIONAL 25

Description 25

Code Location 25

Risk Level 26

Recommendation 26

Remediation plan 26

3.6 (HAL-06) MISSING SANITY CHECK ON MARKET CONFIGURATION - INFOR-

MATIONAL 27

Description 27

Code Location 27

Risk Level 28

Recommendation 28

Remediation plan 28

3.7 (HAL-07) OVERSEER CANNOT DE-LIST MARKETS - INFORMATIONAL 29

Description 29

2

Code Location 29

Risk Level 30

Recommendation 30

Remediation plan 30

3.8 (HAL-08) WRONG LOGGED DATA - INFORMATIONAL 31

Description 31

Code Location 31

Risk Level 31

Recommendation 32

Remediation plan 32

4 AUTOMATED TESTING 33

4.1 AUTOMATED ANALYSIS 34

Description 34

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 02/15/2022 Alexis Fabre

0.2 Document Updates 03/04/2022 Alexis Fabre

0.3 Draft Version 03/08/2022 Alexis Fabre

0.4 Draft Review 03/11/2022 Gabi Urrutia

1.0 Remediation Plan 03/30/2022 Michal Bazyli

1.1 Remediation Plan Review 03/30/2022 Gabi Urrutia

4

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Luis Quispe
Gonzales

Halborn Luis.QuispeGonzales@halborn.com

Alexis Fabre Halborn Alexis.Fabre@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Luis.QuispeGonzales@halborn.com
mailto:Alexis.Fabre@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

engaged Halborn to conduct a security audit on their smart contracts

beginning on February 15th, 2022 and ending on March 4th, 2022 . The

security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks, which were partially addressed by Sienna.Network

team. The main ones are the following:

• Ensure that a user can enter the same market only once.

• Ensure that a low asset price do not get truncated to zero when

calculating liquidity.

External threats, such as financial related attacks, oracle attacks, and

inter-contract functions and calls should be validated for expected logic

and state.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow security

best practices. The following phases and associated tools were used

throughout the term of the audit:

• Research into architecture, purpose, and use of the platform.

• Manual code read and walkthrough.

• Manual assessment of use and safety for the critical Rust variables

and functions in scope to identify any contracts logic related

vulnerability.

• Fuzz testing (Halborn custom fuzzing tool)

• Checking the test coverage (cargo tarpaulin)

• Scanning of Rust files for vulnerabilities (cargo audit)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

1. CosmWasm Smart Contracts

(a) Repository: contracts-lend

(b) Commit ID: dbe3c8688e75dd0b89634e6f22f861e44c849f06

(c) Contracts in scope:

i. interest_model

ii. market

iii. mock_band_oracle

iv. oracle

v. overseer

Out-of-scope: External libraries and financial related attacks

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://git.sienna.network/SiennaNetwork/contracts/src/branch/dev/contracts/lend
https://git.sienna.network/SiennaNetwork/contracts/src/commit/dbe3c8688e75dd0b89634e6f22f861e44c849f06/contracts/lend

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

1 0 1 1 5

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)

(HAL-03)

(HAL-04)
(HAL-05)
(HAL-06)

(HAL-07)
(HAL-08)

11

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) USERS CAN ENTER MULTIPLE
TIMES THE SAME MARKET

Critical SOLVED - 03/07/2022

(HAL-02) TRUNCATED DECIMALS CAN
LEAD TO UNLIMITED LOANS

Medium SOLVED - 03/30/2022

(HAL-03) NEW BORROWING PARAMETERS
CAN BE APPLIED TO ONGOING LOANS

Low RISK ACCEPTED

(HAL-04) ADMIN CAN SET WORTHLESS
TOKENS AS COLLATERAL

Informational ACKNOWLEDGED

(HAL-05) ORACLE RISK ALLOWING FREE
LOANS

Informational ACKNOWLEDGED

(HAL-06) MISSING SANITY CHECK ON
MARKET CONFIGURATION

Informational SOLVED - 03/30/2022

(HAL-07) OVERSEER CANNOT DE-LIST
MARKETS

Informational ACKNOWLEDGED

(HAL-08) WRONG LOGGED DATA Informational SOLVED - 03/30/2022

12

EX
EC

UT
IV

E
OV

ER
VI

EW

13

FINDINGS & TECH
DETAILS

3.1 (HAL-01) USERS CAN ENTER
MULTIPLE TIMES THE SAME MARKET -
CRITICAL

Description:

Sienna.Network Lending protocol allows users to supply and borrow from

“markets”, represented by a governance whitelisted underlying token (eg.

sATOM, sSCRT. . .).

In order to borrow from one market, a user must follow the following

steps:

• Alice sends snip20 tokens (eg. 10 sATOM) to the overseer, triggering

the deposit function.

• Then, she calls the enter function, that will signal the overseer to

consider the deposit as collateral. Suppose that 1 sATOM is worth

30$ with an LTV of 50%, Alice will be able to borrow 150$ worth of

other tokens.

It was possible for Alice to call the function enter multiple times,

mutliplying the collateral value of her deposit:

• Alice sends snip20 tokens (eg. 10 sATOM, collateral value of 150$

as previously calculated) to the overseer, triggering the deposit

function.

• Then, she calls the enter function three times. The overseer will

add three times the collateral value of the deposit, and Alice will

be able to borrow (3˚150$) 450$ worth of tokens, based on an initial

300$ deposit.

She can repay her debt and/or borrow even more on the protocol, until

she drained all the liquidity of the protocol. All provided funds by

legitimate users will be lost.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

A proof of concept is described here.

Code Location:

The first listing represents the vulnerability entry point, where the

attackers can provide multiple time the same market address. The overseer

will transmit the markets into add_markets:

Listing 1: contracts/lend/overseer/src/state.rs (Line 238)

231 #[handle]

232 fn enter(markets: Vec <HumanAddr >) -> StdResult <HandleResponse >

ë {

233 let account = Account ::new(&deps.api , &env.message.sender)

ë ?;

234 let ids = markets.iter()

235 .map(|x| Markets :: get_id(deps , x))

236 .collect::<StdResult <Vec <u64 >>>()?;

237

238 account.add_markets (&mut deps.storage , ids)?;

239 Ok(HandleResponse {

240 messages: vec![],

241 log: vec![log("action", "enter")],

242 data: None ,

243 })

244 }

Next, the add_market function only checks that the user enter less than a

maximum number of markets. After that, the function will push all markets

from the arguments to the storage, even if some id are already stored.

Listing 2: contracts/lend/overseer/src/contract.rs (Lines 209-211)

195 pub fn add_markets <S: Storage >(

196 &self ,

197 storage: &mut S,

198 ids: Vec <u64 >

199) -> StdResult <()> {

200 let mut markets = self.load_markets(storage)?;

201

202 if markets.len() + ids.len() > MAX_MARKETS_ENTERED {

203 return Err(StdError :: generic_err(format!(

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.loom.com/share/19c3deb4e55c48ea951bf030957a0431

204 "Cannot enter more than {} markets at a time.",

205 MAX_MARKETS_ENTERED

206)));

207 }

208

209 for id in ids {

210 markets.push(id);

211 }

212

213 self.save_markets(storage , &markets)

214 }

The remove_market function do not properly removes all markets that have

the same id from the storage:

Listing 3: contracts/lend/overseer/src/state.rs (Lines 259-260)

252 pub fn remove_market <S: Storage >(

253 &self ,

254 storage: &mut S,

255 id: u64

256) -> StdResult <()> {

257 let mut markets = self.load_markets(storage)?;

258 if let Some(index) = markets.iter().position (|x| *x == id) {

259 markets.swap_remove(index);

260 self.save_markets(storage , &markets)

261 } else {

262 Ok(())

263 }

264 }

Risk Level:

Likelihood - 5

Impact - 5

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Make sure that it is not possible to enter a market multiple times. Addi-

tionally, fix remove_market to delete all items that match the provided

id.

Remediation Plan:

SOLVED: The issue was fixed in commit 557f5c92d5d9ecc9d7cdee9318aa69bd842a8c31.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://git.sienna.network/SiennaNetwork/contracts/commit/557f5c92d5d9ecc9d7cdee9318aa69bd842a8c31

3.2 (HAL-02) TRUNCATED DECIMALS CAN
LEAD TO UNLIMITED LOANS - MEDIUM

Description:

The oracle uses 128 bits unsigned integers to store the price, where the 18

first digits represents the decimals, and the overseer converts that into

256 bits decimals with 18 digits to perform arithmetic operations when

calculating liquidity and collateral values in the calculate_liquidity

function.

In some cases where the product of the borrow amount and the price of

an asset is very low is lower than 1.0, the result is truncated by the

conversion to an integer, resulting in a free loan.

For example, if a token A is worth 0.1 USD and has 6 digits and Alice

borrows 9 units of token A, the product of the two equals 0.9 units.USD

and is lower than one. Therefore, Alice borrows 9 units of token A

freely.

Note that the vulnerability is mitigated when the price of the asset is

greater than one.

The impact is also greatly reduced by the amount of decimals of a token.

If token A has 6 decimals, Alice would have borrowed 0.000009 token A at

the price of 0.1 USD, which represents 0.0000009 USD and the action is

not profitable because of transaction fees.

Code Location:

Listing 4: contracts/lend/overseer/src/contract.rs (Line 531)

514 let is_target_asset = target_asset == market.contract.address;

515 let snapshot = query_account (&deps.querier , market.contract ,

ë method.clone (), block)?;

516 let price = query_price(

517 &deps.querier ,

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

518 oracle.clone (),

519 market.symbol.into(),

520 QUOTE_SYMBOL.into(),

521 None ,

522)?;

523 let conversion_factor = ((market.ltv_ratio * snapshot.

ë exchange_rate)? * price.rate)?;

524 total_collateral = (Uint256 ::from(snapshot.sl_token_balance)

525 .decimal_mul(conversion_factor)?

526 + total_collateral)?;

527 total_borrowed =

528 (Uint256 ::from(snapshot.borrow_balance).decimal_mul(price.rate

ë)? + total_borrowed)?;

529 if is_target_asset {

530 total_borrowed = (redeem_amount.decimal_mul(conversion_factor)

ë ? + total_borrowed)?;

531 total_borrowed = (borrow_amount.decimal_mul(price.rate)? +

ë total_borrowed)?;

532 }

Risk Level:

Likelihood - 2

Impact - 4

Recommendation:

It is advised to perform arithmetic on integers to avoid decimal approx-

imations. As an alternate mitigation, a verification can be performed on

total_collateral and total_borrowed to revert the transaction when one

or both is equal to zero.

Remediation plan:

SOLVED: The issue was fixed in commit 6acd2bcc9966bc671bd60929d7b72393838fb708.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://git.sienna.network/SiennaNetwork/contracts/commit/6acd2bcc9966bc671bd60929d7b72393838fb708

3.3 (HAL-03) NEW BORROWING
PARAMETERS CAN BE APPLIED TO
ONGOING LOANS - LOW

Description:

The change_market function in contracts/lend/overseer/src/contract.rs al-

lows the unrestricted modification of ltv_ratio, affecting how much bor-

rowing power a specific token yields. The change_config function of the

same contract also allows the modification of close_factor, that defines

the liquidation threshold. If mistakenly done, it would imply that many

debt positions can be liquidated in unfair fashion, which severely affects

borrowers’ lending strategy.

It is worth noting that the likelihood for this to happen is low because

the overseer contract is intended to be owned by governance indefinitely,

who is the responsible one for this operation.

Code Location:

Here, the administrator can update a market ltv_ratio. The validate

function verifies if the value of ltv_ratio is lesser or equal than 1 and

also greater than 0. However, it does not verify if the new value has a

significant difference with the previous one.

Listing 5: contracts/lend/overseer/src/contract.rs (Lines 297-304)

294 #[handle]

295 #[require_admin]

296 Markets :: update(deps , &market , |mut m| {

297 m.ltv_ratio = ltv_ratio;

298 m.validate ()?;

299 m.symbol = symbol.clone ();

300 Ok(m)

301 })?;

302 let messages = if update_oracle {

303 let oracle = Contracts :: load_oracle(deps)?;

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

304 vec![CosmosMsg ::Wasm(WasmMsg :: Execute {

305 contract_addr: oracle.address ,

306 callback_code_hash: oracle.code_hash ,

307 send: vec![],

308 msg: to_binary (& OracleHandleMsg :: UpdateAssets {

309 assets: vec![Asset {

310 address: stored_market.contract.address ,

311 symbol ,

312 }],

313 })?,

314 })]

315 } else {

316 vec![]

317 };

318 Ok(HandleResponse {

319 messages ,

320 log: vec![],

321 data: None

322 })

323 }

Here the admin can update the close_factor without any validation:

Listing 6: contracts/lend/overseer/src/contract.rs (Lines 341-343)

331 #[handle]

332 #[require_admin]

333 fn change_config(

334 premium_rate: Option <Decimal256 >,

335 close_factor: Option <Decimal256 >

336) -> StdResult <HandleResponse > {

337 let mut constants = Constants ::load(&deps.storage)?;

338 if let Some(premium_rate) = premium_rate {

339 constants.set_premium(premium_rate)?;

340 }

341 if let Some(close_factor) = close_factor {

342 constants.set_close_factor(close_factor)?;

343 }

344 Constants ::save(&mut deps.storage , &constants)?;

345 Ok(HandleResponse {

346 messages: vec![],

347 log: vec![

348 log("action", "change_config"),

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

349 log("premium_rate", constants.premium ()),

350 log("close_factor", constants.close_factor ())

351],

352 data: None

353 })

354 }

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

Update the logic of change_market and change_config functions to include

a ramp change schema for close_factor and ltv_ratio that includes the

following criteria:

• Minimum time window between changes.

• New value cannot be lower than a predefined threshold.

• New value should not differ more than a predefined amount / percentage

from the previous one.

As a reference, ramp change schema for Curve protocol is included in the

following link.

Remediation plan:

RISK ACCEPTED: The Sienna.Network accepted the risk of this finding.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/base/SwapTemplateBase.vy#L742

3.4 (HAL-04) ADMIN CAN SET
WORTHLESS TOKENS AS COLLATERAL -
INFORMATIONAL

Description:

In the overseer contract, the change_market function allows an adminis-

trator to update the LTV ratio and/or the symbol of a designated market

(e.g. token whitelisted in the lending platform). In order to restrict

worthless tokens to be used as collateral, the function controls that

the token price is not zero by querying the oracle: query_price(SYMBOL,

QUOTE). However, when updating the SYMBOL at the same time as the LTV

value, the aforementioned control is performed on the new asset SYMBOL.

That logic flaw allows an administrator to:

- First call: Set the SYMBOL of the market to something that has a

non-null price (eg. SCRT)

- Second call: Set the LTV value of the market with the wanted value

- Third call: Set the SYMBOL of the market back to the previous one

That will result in a worthless token able to count as collateral. This

couldn’t be escalated to a bigger finding.

Code Location:

Listing 7: contracts/lend/overseer/src/contract.rs (Lines 274,280,285-

290)

264 #[handle]

265 #[require_admin]

266 fn change_market(

267 market: HumanAddr ,

268 ltv_ratio: Option <Decimal256 >,

269 symbol: Option <String >,

270) -> StdResult <HandleResponse > {

271 let (_, stored_market) = Markets :: get_by_addr(deps , &market)?;

272

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

273 let update_oracle = symbol.is_some ();

274 let symbol = symbol.unwrap_or(stored_market.symbol);

275

276 let ltv_ratio = if let Some(ltv_ratio) = ltv_ratio {

277 let price = query_price(

278 &deps.querier ,

279 Contracts :: load_oracle(deps)?,

280 symbol.clone ().into(),

281 QUOTE_SYMBOL.into(),

282 None ,

283)?;

284

285 // Can 't set collateral factor if the price is 0

286 if price.rate == Decimal256 ::zero() {

287 return Err(StdError :: generic_err(

288 "Cannot set LTV ratio if the price is 0",

289));

290 }

291

292 ltv_ratio

293 } else {

294 stored_market.ltv_ratio

295 };

Risk Level:

Likelihood - 1

Impact - 2

Recommendation:

It is recommended to either split the function into two specialized

functions: change_market_symbol and change_market_ltv, or update the

logic to remove this possibility.

Remediation plan:

ACKNOWLEDGED: The Sienna.Network acknowledged this finding.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) ORACLE RISK ALLOWING
FREE LOANS - INFORMATIONAL

Description:

The overseer relies on an external contract, the Band oracle, to get the

prices of underlying assets. That way, the overseer can calculate the

collateral value of each asset. It can happen that oracles get attacked,

resulting in significant losses. Sienna.Network lending protocol would

in that case face unlimited borrow on an asset with a value of 0 until

the market is empty.

The probability of such an event is very low because the Band protocol

uses a volume-weighted average price, aggregating prices from multiple

sources, which greatly reduces the risk of hacks.

Code Location:

Listing 8: contracts/lend/overseer/src/contract.rs (Lines 523-529)

513 for market in markets {

514 let is_target_asset = target_asset == market.contract.address;

515 let snapshot = query_account (&deps.querier , market.contract ,

ë method.clone (), block)?;

516 let price = query_price(

517 &deps.querier ,

518 oracle.clone (),

519 market.symbol.into(),

520 QUOTE_SYMBOL.into(),

521 None ,

522)?;

523 let conversion_factor = ((market.ltv_ratio * snapshot.

ë exchange_rate)? * price.rate)?;

524 total_collateral = (Uint256 ::from(snapshot.sl_token_balance)

525 .decimal_mul(conversion_factor)?

526 + total_collateral)?;

527 total_borrowed =

528 (Uint256 ::from(snapshot.borrow_balance).decimal_mul(price.

ë rate)? + total_borrowed)?;

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

529 if is_target_asset {

530 total_borrowed = (redeem_amount.decimal_mul(

ë conversion_factor)? + total_borrowed)?;

531 total_borrowed = (borrow_amount.decimal_mul(price.rate)? +

ë total_borrowed)?;

532 }

533 }

Risk Level:

Likelihood - 1

Impact - 2

Recommendation:

It is advised to implement a detection mechanism on the price variation,

for example by comparing priceDifference / time between two price queries

at different time, with a threshold (ie. 10%), so that the overseer can

react accordingly (freezing the contract, changing oracle, etc. . .).

Remediation plan:

ACKNOWLEDGED: The Sienna.Network acknowledged this finding. They also

stated that the volume weighted average price of the Band protocol should

be safe enough.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) MISSING SANITY CHECK
ON MARKET CONFIGURATION -
INFORMATIONAL

Description:

At market contract init and update_config, the configuration is stored

without any verification. For example, the reserve factor is expected to

be lower than 1 but is not validated. That can lead to errors when trying

to liquidate positions until the parameter is eventually corrected.

Code Location:

Listing 9: contracts/lend/market/src/contract.rs

353 #[handle]

354 #[require_admin]

355 fn update_config(

356 interest_model: Option <ContractLink <HumanAddr >>,

357 reserve_factor: Option <Decimal256 >,

358 borrow_cap: Option <Uint256 >,

359) -> StdResult <HandleResponse > {

360 let mut config = Constants :: load_config (&deps.storage)?;

361 if let Some(interest_model) = interest_model {

362 Contracts :: save_interest_model(deps , &interest_model)?;

363 }

364

365 if let Some(reserve_factor) = reserve_factor {

366 config.reserve_factor = reserve_factor;

367 Constants :: save_config (&mut deps.storage , &config)?;

368 }

369

370 if let Some(borrow_cap) = borrow_cap {

371 Global :: save_borrow_cap (&mut deps.storage , &borrow_cap)?;

372 }

373

374 Ok(HandleResponse :: default ())

375 }

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 2

Recommendation:

It is advised to validate new configuration parameters to protect the

contract of unwanted behaviour.

Remediation plan:

SOLVED: The issue was fixed in commit 74e01376630f46cd606d16c4c92decbe49d4ee83.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://git.sienna.network/SiennaNetwork/contracts/commit/74e01376630f46cd606d16c4c92decbe49d4ee83

3.7 (HAL-07) OVERSEER CANNOT
DE-LIST MARKETS - INFORMATIONAL

Description:

The overseer allows an admin to whitelist and register a market on which

users can supply and borrow the underlying asset. In case the underlying

asset is deemed malicious after being whitelisted, the only solution is

to use the market contract’s kill-switch.

Note that the front-end can choose to hide blacklisted markets, even if

they are still valid in the blockchain.

Code Location:

Whitelisting structure do not allow the protocol to save a market with

save_market_contract but not to remove a listed market.

Listing 10: contracts/lend/overseer/src/state.rs

65 impl Whitelisting {

66 const KEY_MARKET_CONTRACT: &'static [u8] = b"market_contract";

67 const KEY_PENDING: &'static [u8] = b"pending";

68 #[inline]

69 pub fn save_market_contract(

70 storage: &mut impl Storage ,

71 contract: &ContractInstantiationInfo

72) -> StdResult <()> {

73 save(storage , Self:: KEY_MARKET_CONTRACT , contract)

74 }

75

76 #[inline]

77 pub fn load_market_contract(

78 storage: &impl Storage

79) -> StdResult <ContractInstantiationInfo > {

80 Ok(load(storage , Self:: KEY_MARKET_CONTRACT)?. unwrap ())

81 }

82 pub fn set_pending(

83 storage: &mut impl Storage ,

84 market: &Market <HumanAddr >

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

85) -> StdResult <()> {

86 save(storage , Self:: KEY_PENDING , market)

87 }

88 pub fn pop_pending(

89 storage: &mut impl Storage

90) -> StdResult <Market <HumanAddr >> {

91 let result: Option <Market <HumanAddr >> =

92 load(storage , Self:: KEY_PENDING)?;

93 match result {

94 Some(market) => {

95 storage.remove(Self:: KEY_PENDING);

96 Ok(market)

97 },

98 None => Err(StdError :: unauthorized ())

99 }

100 }

101 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is advised to add a remove_market to the overseer contract

Remediation plan:

ACKNOWLEDGED: The Sienna.Network acknowledged this finding.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) WRONG LOGGED DATA -
INFORMATIONAL

Description:

In the overseer contract, the function register_oracle returns the log

register_interest_token in the response message. That could bring con-

fusion in the deployment of the contract.

Code Location:

Listing 11: contracts/lend/overseer/src/contract.rs (Lines 95,108)

94 #[handle]

95 fn register_oracle () -> StdResult <HandleResponse > {

96 let mut oracle = Contracts :: load_oracle(deps)?;

97

98 if oracle.address != HumanAddr :: default () {

99 return Err(StdError :: unauthorized ());

100 }

101

102 oracle.address = env.message.sender;

103 Contracts :: save_oracle(deps , &oracle)?;

104

105 Ok(HandleResponse {

106 messages: vec![],

107 log: vec![

108 log("action", "register_interest_token"),

109 log("oracle_address", oracle.address),

110],

111 data: None ,

112 })

113 }

Risk Level:

Likelihood - 1

Impact - 1

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Change the log to register_oracle instead.

Remediation plan:

SOLVED: The issue was fixed in commit 406be132d4f5c8a29670afcc9ca5c1a2473b7cf3.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://git.sienna.network/SiennaNetwork/contracts/commit/406be132d4f5c8a29670afcc9ca5c1a2473b7cf3

33

AUTOMATED TESTING

4.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and vulnerabilities. Among the tools used

was cargo audit, a security scanner for vulnerabilities reported to the

RustSec Advisory Database. All vulnerabilities published in https://

crates.io are stored in a repository named The RustSec Advisory Database.

cargo audit is a human-readable version of the advisory database which

performs a scanning on Cargo.lock. Security Detections are only in

scope. All vulnerabilities shown here were already disclosed in the above

report. However, to better assist the developers maintaining this code,

the auditors are including the output with the dependencies tree, and

this is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

ID package Short Description

RUSTSEC-2020-0159 chrono Potential segfault in ‘localtime_r‘

RUSTSEC-2021-0076 libsecp256k1 libsecp256k1 allows overflowing signa-

tures

RUSTSEC-2020-0071 time Potential segfault in the time crate

34

AU
TO

MA
TE

D
TE

ST
IN

G

https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2021-0076
https://rustsec.org/advisories/RUSTSEC-2020-0071

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description

