
Sienna.Network
Rewards V3

CosmWasm Smart Contract
Security Audit

Prepared by: Halborn

Date of Engagement: December 6th, 2021 - December 22nd, 2021

Visit: Halborn.com

DRAFT

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 AUDIT SUMMARY 6

1.2 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 7

1.3 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) USERS CAN INCREASE THEIR STAKED TOKENS WITHOUT DEPOSIT-

ING - CRITICAL 13

Description 13

Code Location 13

Risk Level 14

Recommendation 14

Remediation plan 14

3.2 (HAL-02) REWARDS CANNOT BE CLAIMED WHEN REWARD POOLS ARE CLOSED -

HIGH 15

Description 15

Code Location 15

Risk Level 16

Recommendation 16

Remediation plan 16

3.3 (HAL-03) POSSIBILITY TO TRANSFER AN ARBITRARY AMOUNT OF TOKENS

OUT OF REWARD POOLS - HIGH 17

Description 17

1

DRAFT

Code Location 17

Risk Level 18

Recommendation 18

Remediation plan 18

3.4 (HAL-04) INSUFFICIENT ACCESS CONTROL IN MIGRATION FUNCTIONS -

HIGH 19

Description 19

Code Location 19

Risk Level 21

Recommendation 21

Remediation plan 21

3.5 (HAL-05) PRIVILEGED ADDRESS CAN BE TRANSFERRED WITHOUT CONFIR-

MATION - MEDIUM 22

Description 22

Code Location 22

Risk Level 23

Recommendation 23

Remediation plan 23

3.6 (HAL-06) MIGRATION REQUEST FUNCTION DOES NOT VERIFY THAT OLD

REWARD POOL IS ENABLED TO MIGRATE - LOW 24

Description 24

Code Location 24

Risk Level 24

Recommendation 25

Remediation plan: 25

3.7 (HAL-07) REWARDS UPDATE IS NOT ENFORCED WHEN CLAIMING - LOW 26

Description 26

2

DRAFT

Code Location 26

Risk Level 27

Recommendation 27

Remediation plan 27

3.8 (HAL-08) BONDING PERIOD COULD UNWRAP TO AN INADEQUATE DEFAULT

VALUE - INFORMATIONAL 28

Description 28

Code Location 28

Risk Level 28

Recommendation 28

Remediation plan 29

3.9 (HAL-09) FUNCTION TO QUERY LP TOKEN INFO DOES NOT WORK PROPERLY -

INFORMATIONAL 30

Description 30

Code Location 30

Risk Level 30

Recommendation 30

Remediation plan 31

3

DRAFT

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 12/06/2021 Luis Quispe Gonzales

0.2 Document Updates 12/21/2021 Luis Quispe Gonzales

0.3 Draft Version 12/22/2021 Luis Quispe Gonzales

0.4 Draft Review 12/27/2021 Gabi Urrutia

1.0 Remediation Plan 02/21/2022 Luis Quispe Gonzales

1.1 Remediation Plan Review 02/21/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Luis Quispe
Gonzales

Halborn Luis.QuispeGonzales@halborn.com

4

DRAFT

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Luis.QuispeGonzales@halborn.com

5

EXECUTIVE OVERVIEW

DRAFT

1.1 AUDIT SUMMARY

Sienna.Network engaged Halborn to conduct a security assessment on

CosmWasm smart contracts beginning on December 6th, 2021 and ending

December 22nd, 2021.

The security engineers involved on the audit are blockchain and smart con-

tract security experts with advanced penetration testing, smart contract

hacking, and in-depth knowledge of multiple blockchain protocols.

The purpose of this audit is to achieve the following:

• Ensure that smart contract functions work as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks, which were mostly addressed by Sienna.Network team.

The main ones are the following:

• Update the logic of handle_receive_function to verify the sender.

• Enable the transfer of remaining rewards when pools are closed.

• Remove drain function in contract to avoid rug-pull related

attacks. Otherwise, enable additional security measures for this

functionality.

• Harden access control for migration functions.

• Split admin address transfer functionality to allow transfer to be

completed by recipient.

External threats, such as financial related attacks, oracle attacks, and

inter-contract functions and calls should be validated for expected logic

and state.

6

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

1.2 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow security

best practices. The following phases and associated tools were used

throughout the term of the audit:

• Research into architecture, purpose, and use of the platform.

• Manual code read and walkthrough.

• Manual assessment of use and safety for the critical Rust variables

and functions in scope to identify any contracts logic related

vulnerability.

• Fuzz testing (Halborn custom fuzzing tool)

• Checking the test coverage (cargo tarpaulin)

• Scanning of Rust files for vulnerabilities (cargo audit)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

7

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

1.3 SCOPE

1. CosmWasm Smart Contracts

(a) Repository: rewards

(b) Commit ID: 649dec6fe6ae4af2f8235e5abdab6ebc5eb3a851

(c) Contracts in scope:

i. rewards

2. Retest of updated code

(a) Repository: amm-rewards

(b) Commit ID: 39e87e425f3ebabfbdc4e45d41026185e8ac2858

(c) Contracts in scope:

i. rewards

Out-of-scope: External libraries and financial related attacks

9

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

https://github.com/SiennaNetwork/sienna/tree/dev/contracts/rewards
https://github.com/SiennaNetwork/sienna/tree/649dec6fe6ae4af2f8235e5abdab6ebc5eb3a851/contracts/rewards
https://git.sienna.network/SiennaNetwork/contracts/src/branch/dev/contracts/amm/rewards
https://git.sienna.network/SiennaNetwork/contracts/src/commit/39e87e425f3ebabfbdc4e45d41026185e8ac2858/contracts/amm/rewards

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

1 3 1 2 2

IM
PA
CT

LIKELIHOOD

(HAL-03) (HAL-02) (HAL-01)

(HAL-05)

(HAL-06)
(HAL-07)

(HAL-04)

(HAL-08)

(HAL-09)

10

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) USERS CAN INCREASE THEIR
STAKED TOKENS WITHOUT DEPOSITING

Critical SOLVED - 12/22/2021

(HAL-02) REWARDS CANNOT BE CLAIMED
WHEN REWARD POOLS ARE CLOSED

High SOLVED - 12/23/2021

(HAL-03) POSSIBILITY TO TRANSFER AN
ARBITRARY AMOUNT OF TOKENS OUT OF

REWARD POOLS
High SOLVED - 12/30/2021

(HAL-04) INSUFFICIENT ACCESS
CONTROL IN MIGRATION FUNCTIONS

High SOLVED - 12/22/2021

(HAL-05) PRIVILEGED ADDRESS CAN BE
TRANSFERRED WITHOUT CONFIRMATION

Medium SOLVED - 12/28/2021

(HAL-06) MIGRATION REQUEST FUNCTION
DOES NOT VERIFY THAT OLD REWARD

POOL IS ENABLED TO MIGRATE
Low RISK ACCEPTED

(HAL-07) REWARDS UPDATE IS NOT
ENFORCED WHEN CLAIMING

Low NOT APPLICABLE

(HAL-08) BONDING PERIOD COULD
UNWRAP TO AN INADEQUATE DEFAULT

VALUE
Informational SOLVED - 12/28/2021

(HAL-09) FUNCTION TO QUERY LP TOKEN
INFO DOES NOT WORK PROPERLY

Informational SOLVED - 12/29/2021

11

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

12

FINDINGS & TECH
DETAILS

DRAFT

3.1 (HAL-01) USERS CAN INCREASE
THEIR STAKED TOKENS WITHOUT
DEPOSITING - CRITICAL

Description:

handle_receive_migration function in contracts/rewards/lib.rs allows

users to increase without restrictions their amount of staked LP tokens

in reward pools without depositing any token. It is important to mention

that there is no need that reward pools are closed because this function

can be called at anytime (and many times, too).

As a consequence, malicious users can later completely claim / withdraw

all accumulated rewards and staked LP tokens in reward pools.

A proof of concept video showing how to exploit this security issue is

included in the report.

Code Location:

The amount of staked LP tokens is increased without verifying the sender:

Listing 1: contracts/rewards/lib.rs (Lines 228,229)

215 fn handle_receive_migration (&mut self , env: Env , data: Binary) ->

216 StdResult <HandleResponse >

217 {

218 let (migrant , vk , staked): AccountSnapshot = from_slice (&data.

as_slice ())?;

219 let id = self.canonize(migrant.clone ())?;

220 // Set the migrant 's viewing key

221 if let Some(vk) = vk {

222 // for some reason it does not see Auth as implemented

223 //Auth:: save_vk (&mut core , id.as_slice (), &vk)?;

224 self.set_ns(crate ::auth:: VIEWING_KEYS , id.as_slice (), &vk)

?;

225 }

226 // Add the LP tokens transferred by the migration

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

http://www.loom.com/share/f84963e5faec4843a26e555b6b798e61

227 // to the migrant 's new account

228 Account :: from_addr(self , &migrant , env.block.time)?

229 .commit_deposit(self , staked)?;

230 HandleResponse :: default ()

231 .log("migrated", &staked.to_string ())

232 }

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

Update the logic of handle_receive_migration function to verify that the

sender should be in the old reward pool and its address registered in the

new reward pool (CAN_MIGRATE_FROM).

Remediation plan:

SOLVED: The issue was fixed in commit 20dce5c6a7dfcd983ae2fbc4292b1b58678ae07e.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://github.com/SiennaNetwork/sienna/commit/20dce5c6a7dfcd983ae2fbc4292b1b58678ae07e

3.2 (HAL-02) REWARDS CANNOT BE
CLAIMED WHEN REWARD POOLS ARE
CLOSED - HIGH

Description:

According to the migration flow defined, once a reward pool is closed,

users should be able to withdraw their stake and claim any remaining

rewards.

However, when users try to deposit, withdraw or claim in a closed reward

pool, the function force_exit from contracts/rewards/algo.rs is called

automatically. This function transfers staked LP tokens to users, but

does not return remaining rewards.

As a consequence, users will never be able to claim their rewards because

when a reward pool is closed, it cannot be opened anymore.

Code Location:

force_exit function transfers staked LP tokens to users, but does not

return rewards:

Listing 2: contracts/rewards/algo.rs (Lines 648,651)

644 fn force_exit (&mut self , core: &mut C) -> StdResult <

HandleResponse > {

645 if let Some((ref when , ref why)) = self.total.closed {

646 let amount = self.staked;

647 let response = HandleResponse :: default ()

648 .msg(RewardsConfig :: lp_token(core)?. transfer (&self.

address , amount)?)?

649 .log("close_time", &format!("{}", when))?

650 .log("close_reason", &format!("{}", why))?;

651 self.commit_withdrawal(core , amount)?;

652 Ok(response)

653 } else {

654 errors :: pool_not_closed ()

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://github.com/SiennaNetwork/sienna/tree/dev/contracts/rewards#migration-flow

Risk Level:

Likelihood - 4

Impact - 5

Recommendation:

Update the logic of force_exit function to transfer remaining rewards to

users when a reward pool is closed.

Remediation plan:

SOLVED: The issue was fixed in commit 6bb07ab9a720258fa1e19941397c5bb346186512.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://github.com/SiennaNetwork/sienna/pull/75/commits/6bb07ab9a720258fa1e19941397c5bb346186512

3.3 (HAL-03) POSSIBILITY TO
TRANSFER AN ARBITRARY AMOUNT OF
TOKENS OUT OF REWARD POOLS - HIGH

Description:

drain function in contracts/rewards/drain.rs allows admin to

unrestrictedly increase allowance of a potentially malicious external

account and later transfer an arbitrary amount of tokens (LP or SIENNA

tokens) out of reward pools. The maximum amount of tokens to transfer

depends on the amount of staked LP tokens and accumulated rewards in

each reward pool.

Attack scenario:

1. Malicious (or compromised) admin calls drain function with snip20 =

<lp_token_contract> and recipient = <malicious_account>.

2. As a consequence of Step 1, the aforementioned function will increase

the allowance of the malicious account for LP token.

3. The malicious (or compromised) admin calls transfer_from function

in LP token contract to transfer all tokens out of reward pool.

4. Step 1 to Step 3 are repeated using snip20 = <SIENNA_token_contract>.

5. Step 1 to Step 4 are repeated for each reward pool.

Code Location:

Listing 3: contracts/rewards/drain.rs (Line 27)

17 // Update the viewing key if the supplied

18 // token info for is the reward token

19 let reward_token = RewardsConfig :: reward_token(self)?;

20 if reward_token.link == snip20 {

21 self.set(RewardsConfig ::REWARD_VK , key.clone ())?

22 }

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

23 let allowance = Uint128(u128::MAX);

24 let duration = Some(env.block.time + DAY * 10000);

25 let snip20 = ISnip20 :: attach(snip20);

26 HandleResponse :: default ()

27 .msg(snip20.increase_allowance (&recipient , allowance , duration

)?)?

28 .msg(snip20.set_viewing_key (&key)?)

Risk Level:

Likelihood - 3

Impact - 5

Recommendation:

If not used, it is recommended to totally remove drain function to avoid

rug-pull related attacks. Otherwise, the following security measures

should be applied:

• As a prerequisite to enable drain function to admin, reward pool

should be closed.

• Closed reward pool should allow users to withdraw their stakes and

claim their remaining rewards. Alternatively, users should be able

to migrate their stakes / rewards to a new reward pool if available.

• Once a reward pool is closed, drain function could be enabled to

admin after a predefined wait time, which should be hardcoded in

contract and with a minimum threshold (in case is modifiable).

Remediation plan:

SOLVED: The issue was fixed in the following commits:

• 48f5b768a31e78b93f95e064c7b10f0630d720c5

• 5872d165ab7d6fafaef048c33c19b282ef26b233

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://github.com/SiennaNetwork/sienna/commit/48f5b768a31e78b93f95e064c7b10f0630d720c5
https://github.com/SiennaNetwork/sienna/commit/5872d165ab7d6fafaef048c33c19b282ef26b233

3.4 (HAL-04) INSUFFICIENT ACCESS
CONTROL IN MIGRATION FUNCTIONS -
HIGH

Description:

handle_request_migration function in contracts/rewards/migration.rs and

handle_export_state function in contracts/rewards/lib.rs do not have ade-

quate access controls for migration process, which generates the following

consequences:

• In handle_request_migration function, previous reward pool address

(prev) is not restricted; thus, users can execute any potentially

malicious message on behalf of current reward pool.

• handle_export_state function verifies the value of can_export_state

function before continuing with its execution. However, this latter

function entirely ignores sender address, which means that does not

exist access control for handle_export_state function.

Code Location:

handle_request_migration function does not verify old reward pool address:

Listing 4: contracts/rewards/migration.rs (Line 178)

175 fn handle_request_migration (&mut self , env: Env , prev:

ContractLink <HumanAddr >)

176 -> StdResult <HandleResponse >

177 {

178 HandleResponse :: default ().msg(CosmosMsg ::Wasm(WasmMsg :: Execute

{

179 contract_addr: prev.address ,

180 callback_code_hash: prev.code_hash ,

181 send: vec![],

182 msg: self.wrap_export_msg(EmigrationHandle :: ExportState(

env.message.sender))?,

183 }))

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

handle_export_state function verifies the value of can_export_state func-

tion (see below) before continuing with its execution:

Listing 5: contracts/rewards/lib.rs (Line 177)

174 fn handle_export_state (&mut self , env: &Env , migrant: &HumanAddr)

175 -> StdResult <HandleResponse >

176 {

177 let receiver = self.can_export_state (&env , &migrant)?;

178 let mut account = Account :: from_addr(self , &migrant , env.block

.time)?;

179 let staked = account.staked;

180 let id = self.canonize(migrant.clone ())?;

181

182 let snapshot = to_binary (&((

183 migrant.clone (),

184 Auth:: load_vk(self , id.as_slice ())?.map(|vk|vk.0),

185 staked

186) as AccountSnapshot))?;

can_export_state function does not verify that address of receiver_link

is equal to sender address:

Listing 6: contracts/rewards/migration.rs (Lines 84,85)

71 fn can_export_state (&mut self , env: &Env , migrant: &HumanAddr)

72 -> StdResult <ContractLink <HumanAddr >>

73 {

74 // The ExportState transaction is not meat to be called

manually by the user;

75 // it must be called by the contract which is receiving the

migration

76 if &env.message.sender == migrant {

77 return Err(StdError :: generic_err("This handler must be

called as part of a transaction"))

78 }

79 // If migration to the caller contract is enabled ,

80 // its code hash should be available in storage

81 let id = self.canonize(env.message.sender.clone ())?;

82 let receiver_link: Option <ContractLink <HumanAddr >> =

83 self.get_ns(Self:: CAN_MIGRATE_TO , id.as_slice ())?;

84 if let Some(receiver_link) = receiver_link {

85 Ok(receiver_link)

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

86 } else {

87 Err(StdError :: generic_err("Migration to this target is not

enabled."))

88 }

89 }

Risk Level:

Likelihood - 5

Impact - 3

Recommendation:

Harden access control for functions mentioned above by verifying the

sender address.

Remediation plan:

SOLVED: The issue was fixed in the following commits:

• 20dce5c6a7dfcd983ae2fbc4292b1b58678ae07e

• 6e9511a5721a38690b02c8fbab1239eea96d0a08.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://github.com/SiennaNetwork/sienna/commit/20dce5c6a7dfcd983ae2fbc4292b1b58678ae07e
https://github.com/SiennaNetwork/sienna/commit/6e9511a5721a38690b02c8fbab1239eea96d0a08

3.5 (HAL-05) PRIVILEGED ADDRESS CAN
BE TRANSFERRED WITHOUT
CONFIRMATION - MEDIUM

Description:

An incorrect use of AuthHandle::ChangeAdmin message in contracts/reward-

s/auth.rs can set admin of rewards contract to an invalid address and

inadvertently lose total control of this contract, which cannot be undone

in any way.

Currently, the admin of rewards contract can change the admin address

using the aforementioned message in a single transaction and without

confirmation from the new address.

Code Location:

AuthHandle::ChangeAdmin message in rewards contract is routed to

change_admin function:

Listing 7: contracts/rewards/auth.rs (Lines 37,38)

35 fn handle (&mut self , env: Env , msg: AuthHandle) -> StdResult <

HandleResponse > {

36 match msg {

37 AuthHandle :: ChangeAdmin { address } =>

38 self.change_admin(env , address),

39 AuthHandle :: CreateViewingKey { entropy , .. } =>

40 self.create_vk(env , entropy),

41 AuthHandle :: SetViewingKey { key , .. } =>

42 self.set_vk(env , key)

43 }

44 }

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

change_admin function calls save_admin function:

Listing 8: contracts/rewards/auth.rs (Line 55)

53 fn change_admin (&mut self , env: Env , address: HumanAddr) ->

StdResult <HandleResponse > {

54 self.assert_admin (&env)?;

55 self.save_admin (& address)?;

56 Ok(HandleResponse :: default ())

57 }

save_admin function saves the new admin address in a single transaction:

Listing 9: contracts/rewards/auth.rs (Line 68)

66 fn save_admin (&mut self , address: &HumanAddr) -> StdResult <()> {

67 let admin = self.api().canonical_address(address)?;

68 self.set(ADMIN_KEY , Some(& admin))?;

69 Ok(())

70 }

Risk Level:

Likelihood - 2

Impact - 4

Recommendation:

It is recommended to split admin transfer functionality into set_admin

and accept_admin functions. The latter function allows the transfer to

be completed by the recipient.

Remediation plan:

SOLVED: The issue was fixed in commit 52a04b7261d5cdfe79d98d76c50c0b63103a0bd4.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://github.com/SiennaNetwork/sienna/commit/52a04b7261d5cdfe79d98d76c50c0b63103a0bd4

3.6 (HAL-06) MIGRATION REQUEST
FUNCTION DOES NOT VERIFY THAT OLD
REWARD POOL IS ENABLED TO MIGRATE -
LOW

Description:

handle_request_migration function in contracts/rewards/migration.rs does

not verify that old reward pool is closed (if applicable) and enabled to

migrate to a new one (CAN_MIGRATE_TO), so it can be called at anytime and

not just during migration process as expected.

Code Location:

Listing 10: contracts/rewards/migration.rs

175 fn handle_request_migration (&mut self , env: Env , prev:

ContractLink <HumanAddr >)

176 -> StdResult <HandleResponse >

177 {

178 HandleResponse :: default ().msg(CosmosMsg ::Wasm(WasmMsg :: Execute

{

179 contract_addr: prev.address ,

180 callback_code_hash: prev.code_hash ,

181 send: vec![],

182 msg: self.wrap_export_msg(EmigrationHandle :: ExportState(

env.message.sender))?,

183 }))

184 }

Risk Level:

Likelihood - 1

Impact - 3

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Recommendation:

Verify in handle_request_migration function that the old reward pool

is closed (if applicable) and enabled to migrate to a new reward pool

(CAN_MIGRATE_TO).

Remediation plan::

RISK ACCEPTED: The Sienna.Network team accepted the risk for this finding

in favor of being able to run several versions of the contract at the

same time.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.7 (HAL-07) REWARDS UPDATE IS NOT
ENFORCED WHEN CLAIMING - LOW

Description:

According to epoch flow defined, SIENNA tokens are transferred to reward

pools in a daily basis. When users call claim function in contract-

s/rewards/algo.rs, it does not update rewards for calling user before

transferring SIENNA tokens.

As a consequence, in the worst scenario, users could claim rewards that are

not updated since the previous day. Furthermore, this difference cannot

be claimed later because users’ state, which is used to calculate rewards,

is reset after claiming: starting_pool_volume, starting_pool_rewards and

volume.

Code Location:

claim function calls commit_claim function and transfer SIENNA tokens

without updating rewards for calling user:

Listing 11: contracts/rewards/algo.rs (Lines 638,640)

628 fn claim (&mut self , core: &mut C) -> StdResult <HandleResponse > {

629 if self.total.closed.is_some () {

630 self.force_exit(core)

631 } else if self.bonding > 0 {

632 errors :: claim_bonding(self.bonding)

633 } else if self.total.budget == Amount ::zero() {

634 errors :: claim_pool_empty ()

635 } else if self.earned == Amount ::zero() {

636 errors :: claim_zero_claimable ()

637 } else {

638 self.commit_claim(core)?;

639 HandleResponse :: default ()

640 .msg(RewardsConfig :: reward_token(core)?. transfer (&self

.address , self.earned)?)?

641 .log("reward", &self.earned.to_string ())

642 }

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://github.com/SiennaNetwork/sienna/tree/dev/contracts/rewards#epoch-flow

commit_claim function updates the amount claimed without updating rewards

for calling user:

Listing 12: contracts/rewards/algo.rs (Line 689)

684 fn commit_claim (&mut self , core: &mut C) -> StdResult <()> {

685 if self.earned > Amount ::zero() {

686 self.reset(core)?;

687 self.total.commit_claim(core , self.earned)?;

688 }

689 Ok(())

690 }

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

It is recommended to automatically update rewards of calling users before

transferring them SIENNA tokens.

Remediation plan:

NOT APPLICABLE: Sienna.Network team claimed that rpt contract [out of

scope for this security audit] distributes a fixed amount of tokens among

all reward pools once per 24 hours. So, if someone calls vest function

in the middle of that period, it won’t do anything.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.8 (HAL-08) BONDING PERIOD COULD
UNWRAP TO AN INADEQUATE DEFAULT
VALUE - INFORMATIONAL

Description:

get function in ITotal trait from contracts/rewards/algo.rs unwraps bond-

ing period (if it is None) to a value of 0, which could affect severely

rewards claiming speed. However, this is an unlikely scenario because

total.bonding is set to a value of Some(DAY) during initialization of

rewards contract.

Code Location:

Listing 13: contracts/rewards/algo.rs (Line 396)

392 // # 4. Throttles

393 // * Bonding period: user must wait this much before each claim.

394 // * Closing the pool stops its time and makes it

395 // return all funds upon any user action.

396 total.bonding = core.get(RewardsConfig :: BONDING)?. unwrap_or (0

u64);

397 total.closed = core.get(RewardsConfig :: CLOSED)?;

398 Ok(total)

Risk Level:

Likelihood - 1

Impact - 2

Recommendation:

Update the logic of get function to unwrap bonding period (if it is None)

to a default value that does not affect negatively claiming speed, e.g.:

Some(DAY).

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Remediation plan:

SOLVED: The issue was fixed in commit b144914a5d3cc538f42f2358ef6344193835340c.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://github.com/SiennaNetwork/sienna/commit/b144914a5d3cc538f42f2358ef6344193835340c

3.9 (HAL-09) FUNCTION TO QUERY LP
TOKEN INFO DOES NOT WORK PROPERLY -
INFORMATIONAL

Description:

token_info function in contracts/rewards/lib.rs should show information

about staked LP token in rewards contract. However, the values for the

following fields are not real, but static ones: symbol, decimals and

total_supply.

Code Location:

Listing 14: contracts/rewards/lib.rs (Line 162)

156 fn token_info (&self) -> StdResult <Response > {

157 let info = RewardsConfig :: lp_token(self)?. query_token_info(

self.querier ())?;

158 Ok(Response :: TokenInfo {

159 name: format!("Sienna Rewards: {}", info.name),

160 symbol: "SRW".into(),

161 decimals: 1,

162 total_supply: None

163 })

164 }

Risk Level:

Likelihood - 2

Impact - 1

Recommendation:

Update the logic of token_info function to show the real values of symbol,

decimals and total_supply for LP token.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Remediation plan:

SOLVED: The issue was fixed in commit 57c9d10bc240032c4d23632ee68aa5cd5a7d9ca1.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://github.com/SiennaNetwork/sienna/commit/57c9d10bc240032c4d23632ee68aa5cd5a7d9ca1

THANK YOU FOR CHOOSING

DRAFT

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan:

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

