
Sienna.Network -
Rewards Contract
- Bonding Update

CosmWasm Smart Contract
Security Audit

Prepared by: Halborn

Date of Engagement: August 23rd, 2022 - August 26th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 5

1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 5

1.4 SCOPE 7

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 8

3 FINDINGS & TECH DETAILS 9

3.1 (HAL-01) CLIENT QUERY COULD CAUSE UNDERFLOW - LOW 11

Description 11

Code Location 11

Risk Level 12

Recommendation 12

Remediation Plan 12

3.2 (HAL-02) MISLEADING NOMENCLATURE - INFORMATIONAL 13

Description 13

Code Location 13

Risk Level 14

Recommendation 14

Remediation Plan 14

3.3 (HAL-03) LACK OF CODE REUSE - INFORMATIONAL 15

Description 15

1

Code Location 15

Risk Level 16

Recommendation 16

Remediation Plan 16

4 AUTOMATED TESTING 17

4.1 AUTOMATED ANALYSIS 18

Description 18

2

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/25/2022 Elena Maranon

0.2 Draft Review 08/26/2022 Gabi Urrutia

1.0 Remediation Plan 08/27/2022 Elena Maranon

1.1 Remediation Plan Review 08/29/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Elena Maranon Halborn Elena.Maranon@halborn.com

3

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Elena.Maranon@halborn.com

4

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Sienna.Network engaged Halborn to conduct a security audit on their smart

contracts beginning on August 23rd, 2022 and ending on August 26th, 2022.

The security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided four days for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn has identified some minor security risks:

• Unchecked math / arithmetic overflow.

• Misleading nomenclature.

• Lack of code reuse.

1.3 TEST APPROACH & METHODOLOGY

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

5

EX
EC

UT
IV

E
OV

ER
VI

EW

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

6

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

Code repository: SiennaNetwork

1. Smart Contracts

(a) Commit ID: d8fc33bc92b6f3252eda5b52c6e4d95380f996cb

(b) Contracts in scope:

i. rewards: Bonding related updates

It is worth noting that the results of this audit are a complement to

the information provided in previous reports for the security audits

performed to the codebase with the following commit IDs:

1. Rewards V3: 20dce5c6a7dfcd983ae2fbc4292b1b58678ae07e

2. Lending Rewards update: b88b365a690a65121eb77523378be70c4ec604f5

7

EX
EC

UT
IV

E
OV

ER
VI

EW

%7Bhttps://git.sienna.network/SiennaNetwork/contracts/src/commit/d8fc33bc92b6f3252eda5b52c6e4d95380f996cb
https://git.sienna.network/SiennaNetwork/contracts/src/commit/d8fc33bc92b6f3252eda5b52c6e4d95380f996cb
https://git.sienna.network/SiennaNetwork/contracts/src/commit/20dce5c6a7dfcd983ae2fbc4292b1b58678ae07e
https://git.sienna.network/SiennaNetwork/contracts/commit/b88b365a690a65121eb77523378be70c4ec604f5

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 1 2

IM
PA
CT

LIKELIHOOD

(HAL-02)
(HAL-03)

(HAL-01)

8

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) CLIENT QUERY COULD CAUSE
UNDERFLOW

Low RISK ACCEPTED

(HAL-02) MISLEADING NOMENCLATURES Informational ACKNOWLEDGED

(HAL-03) LACK OF CODE REUSE Informational ACKNOWLEDGED

9

EX
EC

UT
IV

E
OV

ER
VI

EW

10

FINDINGS & TECH
DETAILS

3.1 (HAL-01) CLIENT QUERY COULD
CAUSE UNDERFLOW - LOW

Description:

The query function user_bonding_balances from file contracts/amm/reward-

s/query.rs allows a user to consult their balances, accepting two input

values: at and auth_method.

The at value it is supposed to be a time (seconds since UNIX epoch) but,

since this input is not validated, it could be any u64 value. This value

will be inherited by BondingHistory.now parameter during BondingHistory

::load() function.

The function BondingHistory::bonding from file contracts/amm/reward-

s/bonding_history.rs, which is called by BondingHistory::balances one,

uses an unchecked mathematical operation which would produce an underflow

if the at value is manipulated to be smaller that bonding_period. The

underflow will not panic the execution, but it will lead to a wrong

calculation of balances.

It is always recommended to use safe methods on mathematical operations.

Code Location:

bonding function:

Listing 1: contracts/amm/rewards/bonding_history.rs (Line 191)

188 fn bonding (&self) -> Uint128 {

189 let is_bonding = |entry: && HistoryEntry| {

190 entry.bonding_type == BondingType :: Bonding

191 && entry.timestamp > self.now - self.

ë bonding_period

192 };

193 self.history

194 .iter()

195 .filter(is_bonding)

11

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

196 .map(| entry| entry.amount.u128())

197 .sum::<u128 >()

198 .into()

199 }

Risk Level:

Likelihood - 3

Impact - 1

Recommendation:

In “release” mode Rust does not panic on overflows and overflown values

just “wrap” without any explicit feedback to the user. It is recommended

then to use vetted safe math libraries for arithmetic operations con-

sistently throughout the smart contract system. Consider replacing the

addition operator with Rust’s checked_add/saturating_add methods, the

subtraction operator with Rust’s checked_subs/saturating_sub methods and

so on.

Remediation Plan:

RISK ACCEPTED: The Sienna.Network team accepted the risk of this finding.

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) MISLEADING
NOMENCLATURE - INFORMATIONAL

Description:

The function save_and_expire_bonded, from file contracts/amm/reward-

s/bonding_history.rs, updates the BondingHistory.history vector in order

to eliminate the expired bonding entries.

The variable named not_bonding could lead to misunderstood because that

closure is designed to search for currently “bonding” entries in order

to save them and remove those which expired and get into “bonded” state.

Code Location:

save_and_expire_bonded function:

Listing 2: contracts/amm/rewards/bonding_history.rs (Line 175)

171 pub fn save_and_expire_bonded <S: Storage >(

172 &self ,

173 core: &mut impl MutableStorageWrapper <S>,

174) -> StdResult <()> {

175 let not_bonding = |entry: && HistoryEntry| match entry.

ë bonding_type {

176 BondingType :: Bonding => {

177 self.bonding_period > 0 && (entry.timestamp > self

ë .now - self.bonding_period)

178 }

179 _ => true ,

180 };

181 let filtered = &self.history.iter().filter(not_bonding).

ë collect::<Vec <_>>();

182 ns_save(core.storage_mut (), Self::NS, self.user.as_slice ()

ë , filtered)

183 }

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to rename the closure as not_bonded or is_bonding.

In addition, as mentioned in previous findings, it is recommended to

substitute the unsafe mathematical operations for safe arithmetic methods.

Remediation Plan:

ACKNOWLEDGED: The Sienna.Network team acknowledged this finding.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) LACK OF CODE REUSE -
INFORMATIONAL

Description:

The function transfer_withdraw_and_earned from file contracts/amm/re-

wards/accounts.rs is responsible to generate the HandleResponse for the

withdrawn amounts. In case the balance of the account is zero and re-

mains some earnings pending to transfer, it also includes them into the

transfer response.

This functionality is already implemented on claim function, which also

includes additional security checking like if self.total.budget == Amount

::zero(), so it is recommended to reuse the already existing function.

Code Location:

transfer_withdrawn_and_earned function:

Listing 3: contracts/amm/rewards/accounts.rs (Lines 283-289)

274 fn transfer_withdrawn_and_earned(

275 &mut self ,

276 core: &mut C,

277 withdrawn: Uint128 ,

278) -> StdResult <HandleResponse > {

279 let mut response = HandleResponse :: default ();

280 // If all tokens were withdrawn

281 if self.balance == Amount ::zero() {

282 // And if there is some reward claimable

283 if self.earned > Amount ::zero() && self.

ë claim_countdown == 0 {

284 // Also transfer rewards

285 self.commit_claim(core)?;

286 let reward_token = RewardsConfig :: reward_token(

ë core)?;

287 response = response

288 .msg(reward_token.transfer (&self.address , self

ë .earned)?)?

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

289 .log("reward", &self.earned.to_string ())?;

290 } else {

291 // If bonding is not over yet just reset even if

ë some rewards were earned

292 self.reset(core)?;

293 }

294 }

295 let msg = RewardsConfig :: lp_token(core)?. transfer (&self.

ë address , withdrawn)?;

296 response.msg(msg)

297 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to reuse the already existing function claim() instead

of repeat the same functionality inside other function that uses less

security conditions.

Remediation Plan:

ACKNOWLEDGED: The Sienna.Network team acknowledged this finding.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

17

AUTOMATED TESTING

4.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and vulnerabilities. Among the tools used

was cargo audit, a security scanner for vulnerabilities reported to the

RustSec Advisory Database. All vulnerabilities published in https://

crates.io are stored in a repository named The RustSec Advisory Database.

cargo audit is a human-readable version of the advisory database which

performs a scanning on Cargo.lock. Security Detections are only in

scope. All vulnerabilities shown here were already disclosed in the above

report. However, to better assist the developers maintaining this code,

the auditors are including the output with the dependencies tree, and

this is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

ID package Short Description

RUSTSEC-2020-0071 time Potential segfault in the time crate

RUSTSEC-2018-0015 term term is looking for a new maintainer

RUSTSEC-2020-0077 memmap memmap is unmaintained

RUSTSEC-2021-0139 ansi-term ansi-term is unmaintained

18

AU
TO

MA
TE

D
TE

ST
IN

G

https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2018-0015
https://rustsec.org/advisories/RUSTSEC-2020-0077
https://rustsec.org/advisories/RUSTSEC-2021-0139

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description

