
Sienna.Network
Lending Rewards &

Launchpad
(Updated code)
CosmWasm Smart Contract

Security Audit

Prepared by: Halborn

Date of Engagement: July 26th, 2022 - August 4th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 5

1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 6

1.4 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 9

3 FINDINGS & TECH DETAILS 10

3.1 (HAL-01) TOTAL SPEED IS NOT VALIDATED - INFORMATIONAL 12

Description 12

Code Location 12

Risk Level 14

Recommendation 14

Remediation plan 14

3.2 (HAL-02) CONFUSING FUNCTION NAMES - INFORMATIONAL 15

Description 15

Code Location 15

Risk Level 17

Recommendation 17

Remediation plan 17

4 AUTOMATED TESTING 17

4.1 AUTOMATED ANALYSIS 19

Description 19

1

2

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/03/2022 Alexis Fabre

0.2 Document Updates 08/04/2022 Alexis Fabre

0.3 Draft version 08/04/2022 Alexis Fabre

0.4 Draft Review 08/04/2022 Gabi Urrutia

1.0 Remediation Plan 08/11/2022 Alexis Fabre

1.1 Remediation Plan Review 08/11/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Alexis Fabre Halborn Alexis.Fabre@halborn.com

3

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Alexis.Fabre@halborn.com

4

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Sienna.Network engaged Halborn to conduct a security audit on their smart

contracts beginning on July 26th, 2022 and ending on August 4th, 2022.

The security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided a full-time security engineer to audit the

security of the smart contracts. The security engineer is a blockchain and

smart-contract security expert with advanced penetration testing, smart-

contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

• Review codebase changes since last audit

In summary, Halborn identified only minor improvements to reduce the

likelihood and impact of the risks, which were acknowledged by Sienna

team:

• Ensure the total speed distribution speed is validated.

• Ensure that function's behavior are matching their name.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

5

EX
EC

UT
IV

E
OV

ER
VI

EW

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow security

best practices. The following phases and associated tools were used

throughout the term of the audit:

• Research into architecture, purpose, and use of the platform.

• Manual code read and walkthrough.

• Manual assessment of use and safety for the critical Rust variables

and functions in scope to identify any contracts logic related

vulnerability.

• Fuzz testing (Halborn custom fuzzing tool)

• Checking the test coverage (cargo tarpaulin)

• Scanning of Rust files for vulnerabilities (cargo audit)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

6

EX
EC

UT
IV

E
OV

ER
VI

EW

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

1. CosmWasm Smart Contracts

(a) Repository: https://git.sienna.network/SiennaNetwork/contracts

(b) Commit IDs in scope:

i. Lending Rewards update: b88b365a690a65121eb77523378be70c4ec604f5

ii. Launchpad update: 3dce7413f4d1678595b288501f8f6fd8110829ff

(c) Contracts in scope:

i. lending

ii. launchpad

It is worth noting that the results of this audit are a complement to

the information provided in previous reports for the security audits

performed to the codebase with the following commit IDs:

1. Lending: dbe3c8688e75dd0b89634e6f22f861e44c849f06

2. Launchpad: ee2a77996c480ce97fbc14322fc9abe612923dae

3. Rewards V3: 20dce5c6a7dfcd983ae2fbc4292b1b58678ae07e

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://git.sienna.network/SiennaNetwork/contracts
https://git.sienna.network/SiennaNetwork/contracts/commit/b88b365a690a65121eb77523378be70c4ec604f5
https://git.sienna.network/SiennaNetwork/contracts/commit/3dce7413f4d1678595b288501f8f6fd8110829ff
https://git.sienna.network/SiennaNetwork/contracts/src/commit/dbe3c8688e75dd0b89634e6f22f861e44c849f06
https://git.sienna.network/SiennaNetwork/contracts/src/commit/ee2a77996c480ce97fbc14322fc9abe612923dae
https://git.sienna.network/SiennaNetwork/contracts/src/commit/20dce5c6a7dfcd983ae2fbc4292b1b58678ae07e

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 2

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)

9

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) TOTAL SPEED IS NOT
VALIDATED

Informational ACKNOWLEDGED

(HAL-02) CONFUSING FUNCTION NAMES Informational ACKNOWLEDGED

10

EX
EC

UT
IV

E
OV

ER
VI

EW

11

FINDINGS & TECH
DETAILS

3.1 (HAL-01) TOTAL SPEED IS NOT
VALIDATED - INFORMATIONAL

Description:

Parameters configuration has high impact on the behavior of the protocol.

As such, it is considered a good practice to validate the parameters each

time they are initialized or changed.

It was found that in the lend/overseer/contract.rs, the rewards_rate was

not validated, as opposed to premium and close_factor that are validated.

However, that parameter is used as a verification for each ongoing re-

wards distribution, the sum of each should result in rewards_rate, so it

doesn’t require as much limitation as other parameters. Nevertheless, a

reward distribution speed can be updated without bounds as long as the

rewards_rate matches the total speed.

Code Location:

• The reward’s rate is not validated:

Listing 1: libraries/lend-shared/src/interfaces/overseer.rs,

267 pub fn new(

268 premium: Decimal256 ,

269 close_factor: Decimal256 ,

270 rewards_rate: Decimal256 ,

271) -> StdResult <Self > {

272 Self:: validate_close_factor (& close_factor)?;

273 Self:: validate_premium (& premium)?;

274

275 Ok(Self {

276 premium ,

277 close_factor ,

278 rewards_rate ,

279 })

280 }

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

• The rewards rate is not validated:

Listing 2: contracts/lend/overseer/src/contract.rs, (Line 426)

425 if let Some(rate) = rewards_rate {

426 config.rewards_rate = rate;

427 }

• The distribution speed are updated without limitation:

Listing 3: contracts/lend/overseer/src/contract.rs,

430 Markets :: update(deps , &market.address , |mut m| {

431 if m.supply_distribution.speed > market.supply_speed {

432 total_speeds =

433 (total_speeds - (m.supply_distribution.speed - market.

ë supply_speed)?)?;

434 } else {

435 total_speeds =

436 (total_speeds + (market.supply_speed - m.

ë supply_distribution.speed)?)?;

437 }

438

439 m.supply_distribution.speed = market.supply_speed;

440

441 if m.borrow_distribution.speed > market.borrow_speed {

442 total_speeds =

443 (total_speeds - (m.borrow_distribution.speed - market.

ë borrow_speed)?)?;

444 } else {

445 total_speeds =

446 (total_speeds + (market.borrow_speed - m.

ë borrow_distribution.speed)?)?;

447 }

448 m.borrow_distribution.speed = market.borrow_speed;

449

450 Ok(m)

451 })?;

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 2

Recommendation:

It is recommended to limit the total speed value within reasonable bounds.

Remediation plan:

ACKNOWLEDGED: The Sienna.Network team acknowledged this finding.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) CONFUSING FUNCTION
NAMES - INFORMATIONAL

Description:

The use of confusing function names regarding their behavior may not have

a direct impact on the security of the code, but may be introducing logic

bugs in the future for unaware developers.

In the lend/market/state.rs file, the total_borrows and total_supply

state are implementing increase and decrease functions. These functions

effectively add or subtract the adequate amount and stores the new value,

but does return the value before the update.

That feature is used a lot through all the market contract, and may be a

source of bugs for future updates.

Code Location:

• Source of the behaviour for integer state values:

Listing 4: contracts/lend/market/src/state.rs, (Lines 92,104)

83 pub fn increase(

84 storage: &mut impl Storage ,

85 amount: $data_type ,

86) -> StdResult <$data_type > {

87 let current = Self::load(storage)?;

88 let new = (current + amount)?;

89

90 Self::save(storage , &new)?;

91

92 Ok(current)

93 }

94

95 pub fn decrease(

96 storage: &mut impl Storage ,

97 amount: $data_type ,

98) -> StdResult <$data_type > {

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

99 let current = Self::load(storage)?;

100 let new = (current - amount)?;

101

102 Self::save(storage , &new)?;

103

104 Ok(current)

105 }

• Source of the behaviour for account balances value:

Listing 5: contracts/lend/market/src/state.rs, (Lines 243,259)

232 /// Returns the balance as it was before the increment.

233 pub fn add_balance (&self , storage: &mut impl Storage , amount:

ë Uint256) -> StdResult <Uint256 > {

234 let account_balance = self.get_balance(storage)?;

235

236 if let Ok(new_balance) = account_balance + amount {

237 self.set_balance(storage , &new_balance)?;

238 } else {

239 return Err(StdError :: generic_err(

240 "This deposit would overflow your balance",

241));

242 }

243 return Ok(account_balance)

244 }

245

246 /// Returns the balance as it was befor the decrement.

247 pub fn subtract_balance (&self , storage: &mut impl Storage , amount:

ë Uint256) -> StdResult <Uint256 > {

248 let account_balance = self.get_balance(storage)?;

249

250 if let Ok(new_balance) = account_balance - amount {

251 self.set_balance(storage , &new_balance)?;

252 } else {

253 return Err(StdError :: generic_err(format!(

254 "insufficient funds: balance ={}, required ={}",

255 account_balance , amount

256)));

257 }

258

259 return Ok(account_balance);

260 }

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

• Example of utilisation:

Listing 6: contracts/lend/market/src/contract.rs,

249 let old_total_borrows = TotalBorrows :: increase (&mut deps.storage ,

ë amount)?;

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to give a more understandable name for the function.

Remediation plan:

ACKNOWLEDGED: The Sienna.Network team acknowledged this finding.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

18

AUTOMATED TESTING

4.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and vulnerabilities. Among the tools used

was cargo audit, a security scanner for vulnerabilities reported to the

RustSec Advisory Database. All vulnerabilities published in https://

crates.io are stored in a repository named The RustSec Advisory Database.

cargo audit is a human-readable version of the advisory database which

performs a scanning on Cargo.lock. Security Detections are only in

scope. All vulnerabilities shown here were already disclosed in the above

report. However, to better assist the developers maintaining this code,

the auditors are including the output with the dependencies tree, and

this is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

ID package Short Description

RUSTSEC-2020-0071 time Potential segfault in the time crate

RUSTSEC-2018-0015 term term is looking for a new maintainer

RUSTSEC-2020-0077 memmap memmap is unmaintained

19

AU
TO

MA
TE

D
TE

ST
IN

G

https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2018-0015
https://rustsec.org/advisories/RUSTSEC-2020-0077

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description

