
SiennaNetwork -
Launchpad IDO
CosmWasm Smart Contract

Security Audit

Prepared by: Halborn

Date of Engagement: June 27th, 2022 - July 8th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 5

1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 6

1.4 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 9

3 FINDINGS & TECH DETAILS 10

3.1 (HAL-01) NEW CONFIGURATION SETTINGS ARE NOT SAVED - MEDIUM 12

Description 12

Code Location 12

Risk Level 13

Recommendation 13

Remediation Plan 13

3.2 (HAL-02) UNCHECKED MATH - INFORMATIONAL 14

Description 14

PoC Test 14

Code Location 16

Risk Level 17

Recommendation 17

Remediation Plan 17

3.3 (HAL-03) LACK OF INPUT VALIDATION - INFORMATIONAL 18

Description 18

1

Code Location 18

Risk Level 20

Recommendation 20

Remediation Plan 21

3.4 (HAL-04) EXTRA CONDITIONS TO AVOID USELESS OPERATIONS - INFOR-

MATIONAL 22

Description 22

Code Location 22

Risk Level 24

Recommendation 24

Remediation Plan 24

4 AUTOMATED TESTING 25

4.1 AUTOMATED ANALYSIS 26

Description 26

2

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 07/11/2022 Elena Maranon

0.2 Document Updated 07/12/2022 Jakub Heba

0.3 Draft Review 07/13/2022 Gabi Urrutia

1.0 Remediation Plan 07/19/2022 Elena Maranon

1.1 Remediation Plan Review 07/19/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Elena Maranon Halborn Elena.Maranon@halborn.com

Jakub Heba Halborn Jakub.Heba@halborn.com

3

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Elena.Maranon@halborn.com
mailto:Jakub.Heba@halborn.com

4

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

SiennaNetwork engaged Halborn to conduct a security audit on their smart

contracts beginning on June 27th, 2022 and ending on July 8th, 2022 .

The security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and as-

signed two full-time security engineers to audit the security of the smart

contract. The security engineers are a blockchain and smart-contract se-

curity experts with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks, which should be addressed by SiennaNetwork. The

main improvements highlighted in this report are:

• Fix the change_config function to properly save the modified data.

• Add extra conditions to avoid useless operations, also adding more

security.

• Avoid to use unsafe methods in the code.

5

EX
EC

UT
IV

E
OV

ER
VI

EW

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow security

best practices. The following phases and associated tools were used

throughout the term of the audit:

• Research into architecture, purpose, and use of the platform.

• Manual code read and walkthrough.

• Manual assessment of use and safety for the critical Rust variables

and functions in scope to identify any contracts logic related

vulnerability.

• Checking the test coverage (cargo tarpaulin)

• Scanning of Rust files for vulnerabilities (cargo audit)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

6

EX
EC

UT
IV

E
OV

ER
VI

EW

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

Code repository: SiennaNetwork

1. Smart Contracts

(a) Commit ID: ee2a77996c480ce97fbc14322fc9abe612923dae

(b) Contracts in scope:

i. launchpad/ido

ii. launchpad/launchpad

iii. libraries/lpd-shared

Out-of-scope: External libraries and financial related attacks

8

EX
EC

UT
IV

E
OV

ER
VI

EW

%7Bhttps://git.sienna.network/SiennaNetwork/contracts/src/commit/ee2a77996c480ce97fbc14322fc9abe612923dae
https://git.sienna.network/SiennaNetwork/contracts/src/commit/ee2a77996c480ce97fbc14322fc9abe612923dae

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 0 3

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-03)
(HAL-04)

(HAL-02)

9

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01 NEW CONFIGURATION SETTINGS
ARE NOT SAVED)

Medium SOLVED - 07/15/2022

(HAL-02 UNCHECKED MATH) Informational ACKNOWLEDGED

(HAL-03 LACK OF INPUT VALIDATION) Informational ACKNOWLEDGED

(HAL-04 EXTRA CONDITIONS TO AVOID
USELESS OPERATIONS)

Informational ACKNOWLEDGED

10

EX
EC

UT
IV

E
OV

ER
VI

EW

11

FINDINGS & TECH
DETAILS

3.1 (HAL-01) NEW CONFIGURATION
SETTINGS ARE NOT SAVED - MEDIUM

Description:

The function change_config from file contracts/launchpad/src/contract.rs

allows the administrator to change some configuration values of the

contract after init.

However, when some constraints are modified, the loaded values are not

saved after the modification, so the change will not have any effect.

Code Location:

Fragment of the change_config function:

Listing 1: contracts/launchpad/launchpad/src/contract.rs (Lines

134,145)

133 if min_pre_lock_duration.is_some () || min_sale_duration.

ë is_some () {

134 let mut constraints = Constants :: load_constraints (&deps.

ë storage)?;

135

136 match (min_pre_lock_duration , min_sale_duration) {

137 (Some(min_pre_lock_duration), Some(min_sale_duration))

ë => {

138 constraints.min_pre_lock_duration =

ë min_pre_lock_duration;

139 constraints.min_sale_duration = min_sale_duration;

140 }

141 (Some(min_pre_lock_duration), None) => constraints.

ë min_pre_lock_duration = min_pre_lock_duration ,

142 (None , Some(min_sale_duration)) => constraints.

ë min_sale_duration = min_sale_duration ,

143 (None , None) => unreachable! ()

144 }

145 // MISSING Constants :: save_constraints

146 }

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 4

Impact - 3

Recommendation:

It is recommended to apply a save method at the end of the value modifi-

cation as constraints.save(&mut deps.storage)?.

Remediation Plan:

SOLVED: The Sienna.Network team solved the issue in the new commit

d3c32520828971c1e39b3af70bcc12f3fbc3630a

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://git.sienna.network/SiennaNetwork/contracts/commit/d3c32520828971c1e39b3af70bcc12f3fbc3630a

3.2 (HAL-02) UNCHECKED MATH -
INFORMATIONAL

Description:

In computer programming, an overflow occurs when an arithmetic operation

attempts to create a numeric value that is outside the range that can be

represented with a given number of bits -- either larger than the maximum

or lower than the minimum representable value.

The function swap from contract contracts/launchpad/ido/src/sale.rs im-

plements a mathematical adding operation which could raise an overflow.

This issue has been categorized as informational only, as the exploita-

tion scenario is very specific (PoC Test below). However, as these are

potentially risky patterns, they have been highlighted as such.

In addition, the implementation of the macro impl_number_storage from

contracts/launchpad/ido/src/state.rs also contains an unsafe adding op-

eration. Because this is a macro that can be reused in the future, it

is recommended to use checked math, although if the current uses are not

vulnerable to overflow.

PoC Test:

Listing 2

1 #[test]

2 fn testing_overflow () {

3 let mut launchpad = Launchpad ::new();

4

5 let input_token = launchpad.init_token("Test1", "test3", 18);

6 let sold_token = launchpad.init_token("Test2", "test2", 18);

7

8 let max_u128 = 340282366920938463463374607431768211455;

9 let min_alloc = 100000000000000000000000000000000000000;

10

11 launchpad.whitelist_project_owner(USERS [0]);

12

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

13 let ido = launchpad

14 .create_new_ido(

15 input_token.clone (),

16 lpd_shared :: interfaces ::ido:: TokenRelay :: Existing(

ë sold_token.clone ()),

17 vec![USERS [1]. into()],

18 Uint128 (10000000000000000000) ,

19 lpd_shared :: interfaces ::ido:: SaleConfig {

20 max_allocation: Uint128(max_u128),

21 min_allocation: Uint128(min_alloc),

22 sale_type: lpd_shared :: interfaces ::ido:: SaleType ::

ë PreLockAndSwap ,

23 vesting_config: None ,

24 },

25 USERS [0],

26)

27 .unwrap ();

28

29 launchpad.mint_balance(sold_token.clone (), USERS [0], Uint128(

ë max_u128));

30 launchpad.mint_balance(input_token.clone (), USERS [1], Uint128(

ë max_u128));

31

32 launchpad

33 .launch(

34 ido.address.clone (),

35 Uint128(max_u128),

36 lpd_shared :: interfaces ::ido:: LaunchOptions {

37 sale_duration: DAY * 14,

38 sale_start: None ,

39 pre_lock_duration: Some(DAY * 4),

40 },

41)

42 .unwrap ();

43

44 launchpad

45 .pre_lock(ido.address.clone (),USERS [1],

46 Uint128 (300000000000000000000000000000000000000) ,

47)

48 .unwrap ();

49

50 let time = launchpad.ensemble.block ().time;

51 launchpad.ensemble.block_mut ().time = time + DAY * 8;

52

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

53 // Overflow should be raised

54 launchpad

55 .swap(ido.address.clone (),USERS [1],

56 Uint128 (34028236692093846346337460743176821145) ,

57 None ,

58)

59 .unwrap_err ();

60 }

Code Location:

Fragment of swap function:

Listing 3: contracts/launchpad/launchpad/src/contract.rs (Line 63)

51 let profit = if amount.is_zero () {

52 account.pre_lock_amount

53 } else {

54 let output_amount: Uint128 = convert_token(

55 amount.u128(),

56 token_config.constants.rate.u128(),

57 token_config.constants.input_token_decimals ,

58 token_config.constants.sold_token_decimals ,

59)?

60 .clamp_u128 ()?

61 .into();

62

63 output_amount + account.pre_lock_amount

64 };

65

66 if profit.is_zero () {

67 return error :: nothing_to_claim ();

68 } else if account.total_bought.is_zero () && profit <

ë min_allocation {

69 return error :: min_allocation_not_reached ();

70 }

71

impl_number_storage macro implementation:

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 4: contracts/launchpad/ido/src/state.rs (Line 244)

239 macro_rules! impl_number_storage {

240 ($save_name:ident , $load_name:ident , $key:literal) => {

241 pub fn $save_name(storage: &mut impl Storage , amount:

ë Uint128) -> StdResult <()> {

242 let total = Self:: $load_name(storage)?;

243

244 save(storage , $key , &(total + amount))

245 }

246

247 pub fn $load_name(storage: &impl Storage) -> StdResult <

ë Uint128 > {

248 let result = load(storage , $key)?. unwrap_or_default ();

249

250 Ok(result)

251 }

252 };

253 }

Risk Level:

Likelihood - 2

Impact - 1

Recommendation:

In “release” mode, Rust does not panic on overflows and overflown values

just “wrap” without any explicit feedback to the user. It is recom-

mended then to use vetted safe math libraries for arithmetic operations

consistently throughout the smart contract system. Consider replacing

the addition operator with Rust’s checked_add method, the subtraction

operator with Rust’s checked_subs method, and so on.

Remediation Plan:

ACKNOWLEDGED: The Sienna.Network team acknowledged this finding.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) LACK OF INPUT
VALIDATION - INFORMATIONAL

Description:

The function change_config from contracts/launchpad/src/contract.rs al-

lows changing some configuration values of the contract after instan-

tiation, but the inputs used are not validated before assigning them.

It is recommended to perform address validation/not-empty or check that

constraints values are not zero.

In addition, on function receive from contracts/launchpad/launchpad/sr-

c/lib.rs the input amount should not be zero in any of the three possible

scenarios. Only swap operation admits zero amount but, in this case, it

is called through another function (claim_tokens). Although each sce-

nario performs the corresponding checks later on, due to this is a common

constraint for the three cases, it is recommended to check this condition

at the beginning of the function.

Code Location:

Fragment of change_config method:

Listing 5: contracts/launchpad/launchpad/src/contract.rs (Lines

120,138,139,152,153)

112 if tiers.is_some () || rewards_pool.is_some () {

113 let mut config = WhitelistingConfig ::load(deps)?;

114

115 match (tiers , rewards_pool) {

116 (Some(mut tiers), Some(rewards_pool)) => {

117 tiers.validate ();

118 config.tiers = tiers;

119

120 config.rewards_pool = rewards_pool;

121 }

122 (Some(mut tiers), None) => {

123 tiers.validate ();

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

124 config.tiers = tiers;

125 }

126 (None , Some(rewards_pool)) => config.rewards_pool =

ë rewards_pool ,

127 (None , None) => unreachable! ()

128 }

129

130 config.save(deps)?;

131 }

132

133 if min_pre_lock_duration.is_some () || min_sale_duration.is_some ()

ë {

134 let mut constraints = Constants :: load_constraints (&deps.

ë storage)?;

135

136 match (min_pre_lock_duration , min_sale_duration) {

137 (Some(min_pre_lock_duration), Some(min_sale_duration)) =>

ë {

138 constraints.min_pre_lock_duration =

ë min_pre_lock_duration;

139 constraints.min_sale_duration = min_sale_duration;

140 }

141 (Some(min_pre_lock_duration), None) => constraints.

ë min_pre_lock_duration = min_pre_lock_duration ,

142 (None , Some(min_sale_duration)) => constraints.

ë min_sale_duration = min_sale_duration ,

143 (None , None) => unreachable! ()

144 }

145 }

146

147 if token_contract.is_some () || ido_contract.is_some () {

148 let mut contracts = Contracts ::load(&deps.storage)?;

149

150 match (token_contract , ido_contract) {

151 (Some(token_contract), Some(ido_contract)) => {

152 contracts.ido = ido_contract;

153 contracts.token = token_contract;

154 }

155 (Some(token_contract), None) => contracts.token =

ë token_contract ,

156 (None , Some(ido_contract)) => contracts.ido = ido_contract

ë ,

157 (None , None) => unreachable! ()

158 }

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

159

160 contracts.save(&mut deps.storage)?;

161 }

Fragment of receive method:

Listing 6: contracts/launchpad/launchpad/src/contract.rs (Line 193)

183 fn receive(

184 from: HumanAddr ,

185 amount: Uint128 ,

186 msg: Option <Binary >,

187 _sender: HumanAddr ,

188) -> StdResult <HandleResponse > {

189 let msg = msg.ok_or_else (|| StdError :: generic_err("Message

ë field can 't be empty."))?;

190 let msg = from_binary ::< ReceiverCallbackMsg >(& msg)?;

191 let token_config = Config :: load_token_config (&deps.storage

ë , &deps.api)?;

192

193 //Add input check here

194

195 match msg {

196 ReceiverCallbackMsg :: Launch { options } => {

197 if token_config.sold.link().address != env.message

ë .sender {

198 return Err(StdError :: unauthorized ());

199 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to validate the input parameters of the functions

mentioned.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

ACKNOWLEDGED: The Sienna.Network team acknowledged this finding.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) EXTRA CONDITIONS TO
AVOID USELESS OPERATIONS -
INFORMATIONAL

Description:

The functions receive_tokens and refund_tokens from contracts/launch-

pad/src/lib.rs could avoid performing useless operations by adding some

simple checks, in addition to make the code more secure.

The receive_tokens function allows users to claim for their vested tokens,

and it could be called by external users at anytime. Since there is an

option for periodic refund, the user could call this function several

times, receiving a portion of tokens on each call.

A simple checking at the beginning of the function would avoid executing

the get_portion code.

Listing 7

1 if account.total_claimed.u128() >= account.total_bought.u128() {

2 return error :: nothing_to_claim;

3 }

The refund_tokens function allows the admin to refund the non-bought

tokens from the contract once the sale has finished. This operation

should be done just once, and it must avoid to refund by mistake the user

tokens that are waiting on vesting period. The functions Global::load_-

total_bought and Global::load_total_claimed are used for that control.

However, although these functions avoid admin to refund users tokens,

it does not make a basic and simple check: if (balance-remaining)== 0

there is nothing to claim for the admin, so is not necessary to make the

transfer call with zero amount.

Code Location:

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Fragment of receive_tokens function:

Listing 8: contracts/launchpad/launchpad/src/contract.rs (Line 102)

98 #[handle]

99 fn receive_tokens(recipient: Option <HumanAddr >) -> StdResult <

ë HandleResponse > {

100 let mut account = Account ::load(deps , &env.message.sender)

ë ?;

101

102 //Add checking here

103

104 let (unlocked , claimable) = get_portion(deps , &account ,

ë env.block.time)?;

105

106 if claimable == 0 {

107 return error :: nothing_to_claim ();

108 }

109

110 account.total_claimed += claimable.into();

111 account.save(deps)?;

112

113 Global :: increment_total_claimed (&mut deps.storage ,

ë claimable.into())?;

Fragment of refund_tokens function:

Listing 9: contracts/launchpad/launchpad/src/contract.rs (Lines

163,170)

155 // Don 't refund any unclaimed amount when vesting.

156 if let ReturnTokenType :: Refund {} = return_type {

157 if Config :: load_vesting_config (&deps.storage)?. is_some () {

158 let bought = Global :: load_total_bought (&deps.storage)?;

159 let claimed = Global :: load_total_claimed (&deps.storage)?;

160

161 let remaining = (bought - claimed)?;

162

163 balance = (balance - remaining)?;

164 }

165 }

166

167 Ok(HandleResponse {

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

168 messages: vec![snip20 :: transfer_msg(

169 recipient.unwrap_or(env.message.sender),

170 balance ,

171 None ,

172 None ,

173 BLOCK_SIZE ,

174 token.code_hash ,

175 token.address ,

176)?],

177 data: None ,

178 log: vec![],

179 })

180

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to add some extra checks to add security and avoid

useless operations.

Remediation Plan:

ACKNOWLEDGED: The Sienna.Network team acknowledged this finding.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

25

AUTOMATED TESTING

4.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and vulnerabilities. Among the tools used

was cargo audit, a security scanner for vulnerabilities reported to the

RustSec Advisory Database. All vulnerabilities published in https://

crates.io are stored in a repository named The RustSec Advisory Database.

cargo audit is a human-readable version of the advisory database which

performs a scanning on Cargo.lock. Security Detections are only in

scope. All vulnerabilities shown here were already disclosed in the above

report. However, to better assist the developers maintaining this code,

the auditors are including the output with the dependencies tree, and

this is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

ID package/crate Short Description

RUSTSEC-2020-0071 time Potential segfault in the time crate,

upgrade to >=0.2.23

26

AU
TO

MA
TE

D
TE

ST
IN

G

https://rustsec.org/advisories/RUSTSEC-2020-0071

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	PoC Test
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description

